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The remainder of this chapter describes the current state of the art in applying models to site-
specific agricultural problems, using three approaches. The first is an extension of conventional
methods, the second applies remote sensing tools to provide input data, and the third employs
inverse modeling to generate spatially distributed inputs that produce the best description of the
spatially distributed yield. Before starting on the spatial modeling, a discussion of temporal vari-
ability and how it is handled in dynamic models is useful.

During development, a model's structure depends upon the modeler's compromises between
the objective and what knowledge can be encoded into the model. In simple terms, these are what
can be predicted and what can be described. Although lack of suitable input data can constrain the
choices, for the most part, the objective defines the time basis for the prediction. For example,
predicting canopy temperature during cloud passage requires a time basis ranging from seconds to
minutes, while predicting organic matter contents under decades or centuries of conservation tillage
may require a time basis ranging from months to years. Common examples of several varying
temporal scales include the Root Zone Water Quality Model (RZWQM, Ahuja et al., 2000) at sub-
hourly time steps (for hydrology), the CERES (Jones and Kiniry, 1986) and CROPGRO models
(Hoogenboom et al. 1994; Boote et al., 1998a) at daily time steps, and the CENTURY model
(Parton et al., 1992) at monthly time steps. The remainder of this chapter discusses daily time step
models, often using the CERES-Maize or CROPGRO-Soybean models as examples.

If one concludes that increasing the temporal resolution of a model requires a smaller time
step, then it is possible that this will eventually require alterations in the model structure. This
happens if empirical approximations break down under a smaller time step. For instance, a daily
time step model cannot, by definition, handle diurnal patterns except by using approximations based
on daily averages, ranges, or other statistical descriptions. In most such cases, the empirical
approximation must be replaced by a module somewhat more mechanistic in nature to describe
the time-sensitive processes at the smaller time step.

Often, temporal and spatial problems, and the programming solutions to them, are linked. In
the case of the soil water balance, many models, including the DSSAT suite, currently use the SCS
Curve Number method (USDA-SCS, 1972) to compute runoff and infiltration, which is desirable
because the temporal scale is daily, corresponding to widely available daily total rainfall data. In
order to adequately simulate runoff and redistribution within a field in a two- or three-dimensional
(2-D or 3-D) soil water balance model, more accurate predictions of runoff and surface flow are
needed. Better methods are available, but require shorter time steps and intra-day (or even sub-
hour) rainfall data. As described in the next section, this topic poses yet another challenge to spatial

modeling.

SPATIAL MODELING

Prior to widespread use of spatial tools, models were (usually):

1. Dynamic, meaning they accounted for temporal variability
2. One-dimensional in the vertical soil profile dimension
3. Sensitive to large differences in cultivars, soils, and weather
4. Validated with plot averages

To apply to spatially variable applications, however, they must retain their dynamic nature, as well
as:

1. Add two horizontal dimensions.
2. Account for subtle differences in, primarily, soils, with secondary differences in weather.
3. Predict the variance as well as the mean.
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These additional requirements deserve considerable thought. Within a field, the soil texture and
chemical component (nutrients, salinity, etc.) variation might be significant, but certainly less so
than differences across states, countries, or continents. Weather variability is very much reduced
(and in some models, not a spatial input at all at the field scale, despite many meteorological
parameters being known to have significant spatial variation), and cultivar characteristics are usually
constant across a field. Despite the apparent reduction in these known sources of variation, the
yield variability within a single field can be as large or larger than the yield variability measured
between fields or counties within a state. Even though the soil types may not vary as much within
a field as from field to field or county to county, there is still tremendous variability within the
field that these models must address. Furthermore, if these models are to be reliable for evaluating
variable rate decisions within a field, they must not only be able to provide good predictions of
mean yield, but also of within-field variation in yield, as a response to highly spatially variable
factors that affect yield. Mathematically stated, to use the results in an optimization algorithm, not
only must the mean be predicted well, but also the partial differential with respect to all the important
inputs. These criteria for success are severely stringent.

For a model to be successful, all important variations must be reflected in the model processes
and associated variables established as model inputs. For some situations where mixed results have
been obtained, variations in the observed data may not have been reflected in either one or both
of the model's processes or of the model's inputs. For instance, if a model predicts phenology as
a function of air temperature collected at a weather station several kilometers away, it is not likely
that the observed spatial variation in canopy temperature, and hence energy balance and associated
processes, will be modeled correctly within the field. Another example comes from the use of plot
averages during model validation -observed high-yield spots within a field have been observed
to exceed the model-allowed limit for harvest index, which had been chosen based on plot averages
(Paz et al., 2001). These are clearly cases where simply adding finer-scale input data will not
guarantee success. On the other hand, if a model were to have sufficient detail, but require
correspondingly higher resolution of spatial soils data, then increasing the resolution of inputs
might be productive, but it will almost certainly be expensive. The increase in expense can be easily
proven -doubling the spatial resolution of a measurement means that the number of samples is
doubled in both directions, with four times the cost for sampling.

One can speculate on what model processes and inputs would be necessary to fully characterize
spatial yield variation in typical cropped fields, but both the availability of data and knowledge of
the basic processes are usually quite severely limited (e.g., Robert, 1996). For instance, high-
resolution spatial and temporal variation in soil physical and chemical properties would be prohib-
itively expensive to characterize. Some progress has been made in using terrain analysis and
hydrologic modeling to predict within-field redistribution of runoff (e.g., Simmons et al., 1989;
Moore et al., 1993; Kaspar etal., 2001), although transient effects of spatially variable evapotrans-
piration on soil water content and the several feedbacks into crop water stress, future infiltration,
and eventual crop yield appear to be significant (Sadler et al., 2000a). Beyond these effects within
the framework of the isolated monoculture are an entire litany of "external" factors including weeds,
insects, nematodes, diseases, and other landscape-level ecological factors that so far have not been
integrated completely into many crop models.

In our collective experiences, we have modeled spatially variable crop growth using three
general approaches. The first approach is essentially a brute force method, acquiring inputs and
running the model conventionally at multiple points in space (e.g., Sadler et al., 1998, 1999, 2000b).
A second approach (e.g., Barnes et al., 1997, 2000; Jones and Barnes, 2000) used remote sensing
to either augment inputs or test outputs and change state variables iteratively. The third approach
(e.g., Irmak et al. 2001; Paz et al., 2001) employed objective parameterization, using optimization
routines or database searches, to solve for spatially variable inputs that minimize errors between
simulated and measured yield across seasons. In all three cases, the models used were 1- D models
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repeated in space rather than fully 3-D models of crop growth and yield. These latter, although
desired, are not yet available..

Conventional Method

The conventional method approach was designed simply to acquire input data at more points
than in an otherwise traditional way, either on grids or in management zones, and then to run the
model conventionally at each point. The state of this art in 1995 was catalogued by Sadler and
Russell (1997), who described approximately 20 such efforts, including AEGIS (Papajorgji et al.,
1993; Engel et al., 1995) and other model-running shell programs (e.g., Han et al., 1995). Depending
on the circumstances and how far removed the simulation was from typical conditions, these efforts
suggested two things. First, success was mixed. Some of the work provided acceptable results, but
other results were disappointing (see Sadler and Russell, 1997; Sadler et al., 1998, 1999, 2000b).
Second, acquiring the extensive input data encouraged the search for more efficient procedures.

The usual procedure has been to obtain input values for soil parameters from soil surveys and
typical pedon descriptions at the county level (-1 :24000) or from similar techniques employed at
a fine scale (-1: 1200 -1 :5000). These have been supplemented occasionally with physical property
measurements for profiles on transects and grids. In nearly every case, however, there existed
additional variations not captured in the soil data collected (e.g., Sadler et al., 1998, 1999, 2000b).
Despite the amount of data employed, it did not appear to be sufficient. Increasing the resolution
using standard survey techniques appeared to be neither feasible nor productive, because even the
finer scale approaches have not met with unambiguous success. Making the extensive measurements
deemed necessary has been attempted at considerable effort in research settings, but it is not
generally considered economically feasible in production settings.

The foregoing has dealt with traditional data that has had location added to it. There exists a
data type that is acquired literally en masse (such as via photography), or practically so (such as
with a scanning sensor in remote sensing or an on-the-go yield monitor). One characteristic that
distinguishes such data from the traditional data mentioned above is that where the above is usually
data-starved, these inherently spatial data sets are data-rich. This distinction allows several addi-
tional uses, some of which are worthwhile either in isolation or as a contribution to other spatial
modeling efforts.

Spatial sensors were cited as one of the primary research needs to help solve the lack-of-data
problem at several of the early Precision Agriculture Conferences (Schueller, 1993; Robert, 1996),
and this may still be the primary bottleneck. Where such data have been obtained, they have been
applied in modeling applications in one of three general ways. The first use has usually been to
define areas where variation occurs in soil properties and crop development, illustrating areas that
need to be managed or, in this context, modeled separately. Where one is fortunate enough to have
spatial data for outputs of models, using them for validation of models is quite valuable. Where
the observations are intermediate or state variables in models, in-season adjustments can improve
the performance of models under certain conditions. Where the observations correspond to model
inputs, these can be considered traditional data collected much more efficiently in space. Examples
of such data include depth to clay layer, organic matter, plant population, and topography and
terrain attributes (see review by Sudduthet al., 1997). One particular type of such data is the basis
of the second approach for modeling spatial variation.

Remote Sensing Methods

The particular example of inherently spatially variable data is by remotely sensed (RS) obser-
vations, usually corresponding to intennediate variables. One of the most commonly cited uses of
RS to provide a linkage with crop models has been to estimate leaf area index (LAI; Weigand et al.,
1979). One method is to relate LAI and RS data with a radiative transfer model (RTM; e.g., Asner
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and Wessman, 1997) used in either direction. An RTM can be used to calculate LAI based on the
radiometric characteristics of the field for comparison to the model, or the LAI output from the
model can be used to calculate the scene reflectance for direct comparison to the RS data (Guerif
and Duke, 2000). An advantage of this method is that it is not extremely dependent on site-specific
relationships between the crop and RS data. A disadvantage is that the input data requirements for
some RTM models are themselves quite severe. A second method is to use a locally determined,
empirical relationship between the RS data and variable of interest (e.g., a simple linear regression
with LA! as the independent variable and vegetation index, as in Jones and Barnes, 2000). Other
crop parameters that have been estimated from RS data and incorporated into crop models include
crop water status (Barnes et aI., 2000), evapotranspiration rates (Moran et aI., 1995), and canopy
chlorophyll content (Weiss et aI., 2001).

Exactly how the link is made between RS data and a model has varied according to the objectives
of the researchers involved, but can be grouped by method. In a review on the topic, Moulin et at.
(1998) placed methods to integrate RS data and models into four categories:

1. Inputting a variable estimated from RS data
2. Updating a state variable in a model from an RS estimate
3. Adjusting model's initial conditions
4. Calibrating parameters to produce better agreement between RS estimates and model predictions

during the season

A fifth category uses remotely sensed data to identify areas where crop development is significantly
different from surrounding areas and, thus, requires independent simulation (Jones and Barnes,

2000).
For category 1, it is theoretically possible to build a model that accepts the state variable as an

input rather than as a computation from other inputs. This requires that a sufficiently intensive time
series of spatial data could be obtained for a state variable. There are no known practical examples
of such an application using remotely sensed data directly at daily time steps; however, estimates
of state variables have been interpolated between image acquisitions to derive daily values to drive
a model (examples cited in Moulin et al., 1998).

An example of updating a state variable (category 2) in CERES-Wheat is taken from Barnes
et al. (1997), who modified the LA! predicted by the model based on remotely sensed estimates.
LAI was replaced by a RS estimate when an estimated LAI was available for a particular day and
the model's predicted LA! was outside of a predefined tolerance from the RS estimate. If the
prediction was outside of the tolerance, the model's predicted LAI was set to the RS estimate by
adjusting the model's prediction of accumulated green leaf area and leaf weight to match the RS
estimate. The simulation then would continue until the next RS observation or end of the simulation.
This approach is illustrated in Figure l2.1a, which shows a ratio vegetation index (RVI = ratio of
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a) Ratio vegetation index images (RVI) b) LAI classification map

Figure 12.1 Maps of a wheat field derived from March 31, 1966, image data (a) RVI and (b) LAI classification
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Table 12.1 Predicted and Observed" Wheat Yields
Corresponding to the LAI Classes of Figure 12.1 b

>5
4-5
3-4
2-3
0-2

8000
7500
7000
6500
5700

7454
7417
7366
7008
6045

a Observed is the approximate yield determined for the various

treatments during the 1995-1996 experiment, which has been
assigned to an LAI class based on the LAI of that treatment during
the time the image was acquired.

Figure 12.2 Schematic of approach developed by Maas. (Agron. J., 85:354-358, 1993.)

near-infrared to red reflectance) image acquired from an aircraft on March 31, 1996, near the time
of anthesis. In the image, the bands of increased RVI running left to right correspond to a high
nitrogen treatment. The circles apparent in the image were from pipes that were used to inject
carbon dioxide (see Kimball et al., 1999, fora description of the experiment). CERES-Wheat was
used to simulate the field conditions, assuming adequate nitrogen and water were present. On the
date the image was acquired, the LA! classes from the RVI image (Figure 12.1b) were input to the
model and then the simulation was resumed, still assuming adequate nitrogen and water. Reasonable
yield predictions were obtained with this particular image, because it was near the time of anthesis
(see Table 12.1); however, this approach is subject to several limitations. Accuracy decreased for
LA! modifications more than -10 days before or after anthesis. This method also did not work as
well if the "base" model run was underpredicting LA! (i.e., it was easier to lower the model's
predictipns than to raise them). Difficulties obtaining near-real-time data limit the application of
this particular technique for real-time farm management, and the need for data near the time of
anthesis significantly limits the amount of corrective action available to a farm manager.

An example that uses a combination of categories 3 and 4 is the approach used by Maas (1988,
1993) to calibrate model parameters initially based on LAI. This approach was later expanded by
Moranet al.(1995) to consider RS estimates of evapotranspiration (ET). A flow diagram of their
approach is illustrated in Figure 12.2. The model's initial condition of water content and field
capacity were adjusted based on the difference between RS-estimated and model-predicted ET. To
matchRS estimates of LA!, leaf span or biomass partitioning was changed through adjustments
of the model's calibration parameters. The approach provided accurate simulation for growth and
yield of grain sorghum, com, spring wheat (Maas, 1993) and alfalfa (Moran et al.. 1995).
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Objective Parameterization Methods

The third approach described in this chapter uses an inversion of modeling, which was developed
more recently, and which, because of the complexity of the method, requires somewhat more
explanation than the prior two approaches. It uses the relationships embodied in models to simul-
taneously derive the spatial array of input values that produces the best match to the observed data.
The impetus to this work is that specific values for some critical spatial model inputs, especially
soil properties and rooting depth, are not available at the desired spatial resolution within a field
to adequately predict yield variability. Often, these properties are available only at the soil type
scale, estimated years ago using techniques that provide typical ranges of values within the soil
type. Using values estimated or measured at this larger resolution introduces unacceptable error

for precision farming applications.
To refine the spatial estimates of the selected critical inputs, this approach uses the model with

a range of the chosen critical inputs to predict yield or some other factor of interest, such as temporal
soil water content, and minimizes the error between the set of predicted and measured values. The
idea is that, if these critical parameters are estimated correctly, the model should perform well
across seasons (temporally). Typically, this approach is applied to small homogeneous areas within
a field, and the analysis is conducted independently for each area.

This method, objective parameterization, has been approached in two ways. Both require an
objective function be defined, usually to minimize error between simulated and measured yield.
One method links a classical optimization algorithm, such as Simulated Annealing (Goffe et al.,
1994) or the AMOEBA method (NeIder and Mead, 1965; Press et al., 1992), to the model. Then,
the optimizer runs the model multiple times while incrementally varying the chosen critical inputs
within a reasonable range, and searches for the values of the input parameters that satisfy this
objective function. The second approach constructs a database by running the model with the
selected spatial inputs varied in a linear fashion over the expected range of variation and searching
the database for combinations of inputs that minimize error according to the objective function.

The result from both approaches is a field of spatial inputs calibrated, or fine-tuned, to improve
model performance. The key to success for both is to correctly identify a limited number of key
spatial inputs that are uncertain, and calibrate those inputs within a realistic range. All other

important inputs must be known with reasonable certainty.
The first example of objective parameterization is outlined in Paz et al.(2001). The Igoal of this

work was to use the CROPGRO-Soybean model (Hoogenboom et al., 1994; Boote e~ al., 1998b)
to determine causes of spatial soybean yield variability and to estimate the impact of different
yield-limiting factors on yield variability for a field in Central Iowa. In this example, they identified
water stress, soybean cyst nematodes (SCN), and weeds as the major yield-limiting factors. They
built on previous work with modifications of the model to account for SCN damage (Fallick et al.,
2001), incorporated the effects of tile drainage and nutrient movement (Shen et al., 1998), and then
added the effects of weed damage using a separate model. They divided the 50-ha field into 77
grids and developed the appropriate model inputs for each grid for three seasons. Next, they linked
the simulated annealing algorithm (Goffe et al., 1994) to the model for parameter estimation. Finally,
they solved for the values of tile spacing, saturated hydraulic conductivity of the impermeable layer,
and root depth distribution using the simulated annealing process. They were able to explain
approximately 80% of the spatial yield variability over the 3-year period (Figure 12.3) caused by

water stress, weeds, and SCN.
Once calibration was completed, the model could be used to study the relative effects of the

different yield-limiting factors. They used the calibrated parameters in the model to calculate the
yield loss caused by SCN, weeds, and water stress for one year. Figure 12.4 shows the predicted
yield potential for each grid when all stresses were turned off. Each data point represents the
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Figure 12.3 Predicted vs. measured yield calibrated for 3 seasons for the McGarvey field near Perry, Iowa.
(Paz et al. 2001. A modeling approach to quantify the effeds of spatial soybean yield-limiting
factors. Trans. of the ASAE 44(5):1329-1334. With permission.)
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Figure 12.4 Example for effect attributed to water stress, weeds, and soybean cyst nematode, using 1997
yield data. (Paz et al. 2001. A modeling approach to quantify the effeds of spatial soybean yield-
limiting factors. Trans. of the ASAE 44(5):1329-1334. With permission.)

predicted yield potential for a grid. The yield potential differs in each grid because of differences
in measured soybean plant population for this season. A sequence of model runs was made by
turning off each stress individually to predict the yield reduction due to water stress, SCN, and
weeds in each individual grid. Table 12.2 shows a summary of the results when averaged over all
grids. Water stress caused approximately 709 kg ha-1 in yield loss averaged over all grids. Some
grids had large yield reductions due to water stress, while other grids experienced small yield
reductions. Similarly, SCN and weeds caused average yield reductions of 119 and 20 kg ha-l,
respectively. The interaction among the three yield-limiting factors caused an additional 93 kg ha-1
of yield loss over the field.
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to water-related soil parameters in the several modeling studies described here, the additional effort
to implement and the additional computer resources to run 3-dimensional models may be justified.
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